方法一:暴力枚举
思路及算法
最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。
当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| class Solution { public int[] twoSum(int[] nums, int target) { int n = nums.length; for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { if (nums[i] + nums[j] == target) { return new int[]{i, j}; } } } return new int[0]; } }
|
复杂度分析
时间复杂度:O(N^2),其中 NN 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
空间复杂度:O(1)
方法二:哈希表
思路及算法
注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。
使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N)O(N) 降低到 O(1)O(1)。
这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
1 2 3 4 5 6 7 8 9 10 11 12
| class Solution { public int[] twoSum(int[] nums, int target) { Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>(); for (int i = 0; i < nums.length; ++i) { if (hashtable.containsKey(target - nums[i])) { return new int[]{hashtable.get(target - nums[i]), i}; } hashtable.put(nums[i], i); } return new int[0]; } }
|